论文标题

使用转移深度学习的低延迟实时癫痫发作检测

Low Latency Real-Time Seizure Detection Using Transfer Deep Learning

论文作者

Khalkhali, Vahid, Shawki, Nabila, Shah, Vinit, Golmohammadi, Meysam, Obeid, Iyad, Picone, Joseph

论文摘要

由于信号被电气传输的方式,头皮脑电图(EEG)信号固有地具有较低的信噪比。必须利用时间和空间信息以实现癫痫发作事件的准确检测。使用深度学习的最流行的癫痫发作检测方法不会共同对此信息进行建模,或者需要多次通过信号,这使得系统固有地无因果。在本文中,我们通过将多通道信号转换为灰度图像并使用转移学习来实现高性能来同时利用这两者。拟议的系统是端到端训练的,仅具有非常简单的预处理和后处理操作,这些操作在计算上轻巧且潜伏期较低,从而有利于需要实时处理的临床应用。在坦普尔大学医院癫痫发作copus的V1.5.2的开发数据集上,我们的性能达到了42.05%的敏感性,每24小时的误报为42.05%。在单核CPU以1.7 GHz运行时,该系统的运行速度比实时(0.58 XRT)快,使用16 GBYTE,并且潜伏期为300毫秒。

Scalp electroencephalogram (EEG) signals inherently have a low signal-to-noise ratio due to the way the signal is electrically transduced. Temporal and spatial information must be exploited to achieve accurate detection of seizure events. Most popular approaches to seizure detection using deep learning do not jointly model this information or require multiple passes over the signal, which makes the systems inherently non-causal. In this paper, we exploit both simultaneously by converting the multichannel signal to a grayscale image and using transfer learning to achieve high performance. The proposed system is trained end-to-end with only very simple pre- and postprocessing operations which are computationally lightweight and have low latency, making them conducive to clinical applications that require real-time processing. We have achieved a performance of 42.05% sensitivity with 5.78 false alarms per 24 hours on the development dataset of v1.5.2 of the Temple University Hospital Seizure Detection Corpus. On a single-core CPU operating at 1.7 GHz, the system runs faster than real-time (0.58 xRT), uses 16 Gbytes of memory, and has a latency of 300 msec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源