论文标题
饱和的Kripke结构作为越野堡
Saturated Kripke Structures as Vietoris Coalgebras
论文作者
论文摘要
我们表明,紧凑型越野函数$ \ mathbb {v} $在拓扑空间的顶部和连续映射的类别上,覆盖膜的类别与所有模态饱和的kripke结构的类别都是同构的。扩展了Bezhanishvili,Fontaine和Venema的结果,我们还表明,越野尺毛毛皮和双拟合允许拓扑封闭,并且越野膜的类别具有终端对象。
We show that the category of coalgebras for the compact Vietoris endofunctor $\mathbb{V}$ on the category Top of topological spaces and continuous mappings is isomorphic to the category of all modally saturated Kripke structures. Extending a result of Bezhanishvili, Fontaine and Venema, we also show that Vietoris subcoalgebras as well as bisimulations admit topological closure and that the category of Vietoris coalgebras has a terminal object.