论文标题

多模式数据融合在增强机器人应用的人机相互作用方面:调查

Multi-Modal Data Fusion in Enhancing Human-Machine Interaction for Robotic Applications: A Survey

论文作者

Mohd, Tauheed Khan, Nguyen, Nicole, Javaid, Ahmad Y

论文摘要

人机互动已经存在了几十年,每天都会出现新的应用程序。仍有要实现的主要目标之一是设计一种类似于人类与他人互动的相互作用。因此,有必要开发可以复制更现实,更容易的人机相互作用的交互式系统。另一方面,开发人员和研究人员需要了解用于实现这一目标的最先进方法。我们介绍了这项调查,以为研究人员提供最新的数据融合技术,该技术使用多个输入来实现在机器人应用程序领域中完成任务。此外,输入数据模式广泛地分为单模式和多模式系统及其在包括医疗保健行业在内的无数行业中的应用,这有助于医疗行业的未来发展。它将帮助专业人员使用不同的方式检查患者。多模式系统通过用作单个输入(例如手势,语音,传感器和触觉反馈)的输入组合来区分。所有这些输入可能会融合,也可能不会融合,这提供了多模式系统的另一种分类。该调查以用于多模式系统的技术摘要结束。

Human-machine interaction has been around for several decades now, with new applications emerging every day. One of the major goals that remain to be achieved is designing an interaction similar to how a human interacts with another human. Therefore, there is a need to develop interactive systems that could replicate a more realistic and easier human-machine interaction. On the other hand, developers and researchers need to be aware of state-of-the-art methodologies being used to achieve this goal. We present this survey to provide researchers with state-of-the-art data fusion technologies implemented using multiple inputs to accomplish a task in the robotic application domain. Moreover, the input data modalities are broadly classified into uni-modal and multi-modal systems and their application in myriad industries, including the health care industry, which contributes to the medical industry's future development. It will help the professionals to examine patients using different modalities. The multi-modal systems are differentiated by a combination of inputs used as a single input, e.g., gestures, voice, sensor, and haptic feedback. All these inputs may or may not be fused, which provides another classification of multi-modal systems. The survey concludes with a summary of technologies in use for multi-modal systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源