论文标题

用于计算拓扑不变的重新归一化群体启发的神经网络

Renormalization-group-inspired neural networks for computing topological invariants

论文作者

Margalit, Gilad, Lesser, Omri, Pereg-Barnea, T., Oreg, Yuval

论文摘要

我们表明,鉴于其二维实际空间哈密顿量,人工神经网络(ANN)可以高精度地确定无序系统的拓扑不变。此外,我们描述了一个“重新归一化组”(RG)网络,该网络将大型晶格上的汉密尔顿人转换为另一个小晶格,同时保留不变性。通过迭代将RG网络应用于计算固定尺寸小晶格的Chern数字的“基础”网络,我们可以在不重新训练系统的情况下处理较大的晶格。因此,我们表明,可以针对比网络训练的系统计算更大的系统的真实空间拓扑不变。与以前的方法相比,这为计算时间打开了大门。

We show that artificial neural networks (ANNs) can, to high accuracy, determine the topological invariant of a disordered system given its two-dimensional real-space Hamiltonian. Furthermore, we describe a "renormalization-group" (RG) network, an ANN which converts a Hamiltonian on a large lattice to another on a small lattice while preserving the invariant. By iteratively applying the RG network to a "base" network that computes the Chern number of a small lattice of set size, we are able to process larger lattices without re-training the system. We therefore show that it is possible to compute real-space topological invariants for systems larger than those on which the network was trained. This opens the door for computation times significantly faster and more scalable than previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源