论文标题
加速动态迭代方法的收敛性,以限制的添加剂schwarz分裂用于RLC电路的解决方案
Accelerating the convergence of Dynamic Iteration method with Restricted Additive Schwarz splitting for the solution of RLC circuits
论文作者
论文摘要
研究了具有限制添加剂Schwarz拆分的动态迭代方法,以共同模拟来自RLC电路带有线性组件的线性微分代数方程系统。我们显示了该方法相对于属于受限加性Schwarz界面的线性算子的纯线性收敛或差异。它使我们可以使用Aitken的技术来加速它,以加速融合。这提供了一种动态迭代方法对分裂较不敏感。具有收敛性和不同分裂的数值示例显示了所提出的方法的效率。我们还在将不同类型的电路建模(瞬态稳定性模型和电磁瞬态模型)与重叠分区组合的线性RLC电路上测试。最后,还提供了一些弱非线性差异代数方程系统的结果。
The dynamic iteration method with a restricted additive Schwarz splitting is investigated to co-simulate linear differential algebraic equations system coming from RLC electrical circuit with linear components. We show the pure linear convergence or divergence of the method with respect to the linear operator belonging to the restricted additive Schwarz interface. It allows us to accelerate it toward the true solution with the Aitken's technique for accelerating convergence. This provides a dynamic iteration method less sensitive to the splitting. Numerical examples with convergent and divergent splitting show the efficiency of the proposed approach. We also test it on a linear RLC circuit combining different types of circuit modeling (Transient Stability model and Electro-Magnetic Transient model) with overlapping partitions. Finally, some results for a weakly nonlinear differential algebraic equations system are also provided.