论文标题
Lorentzian歧管上的wetterich方程的代数QFT方法
An algebraic QFT approach to the Wetterich equation on Lorentzian manifolds
论文作者
论文摘要
我们讨论了与Lorentzian签名和通用状态(包括真空和热状态(如果存在))相互作用的标量量子场理论的有效作用的缩放。这是通过最近在扰动代数量子场理论(PAQFT)领域中开发的技术来构建流动方程,该流程方程非常接近著名的wetterich方程。允许人们获得对通用Lorentzian背景有意义的方程式的关键要素是使用本地调节器,该调节器保持协变量。作为概念的证明,开发的方法用于表明在热状态下的量子场理论中出现了非平凡的固定点,而在de Sitter SpaceTime上的Bunch-Davies状态中的量子场中出现。
We discuss the scaling of the effective action for the interacting scalar quantum field theory on generic spacetimes with Lorentzian signature and in a generic state (including vacuum and thermal states, if they exist). This is done constructing a flow equation, which is very close to the renown Wetterich equation, by means of techniques recently developed in the realm of perturbative Algebraic Quantum Field theory (pAQFT). The key ingredient that allows one to obtain an equation which is meaningful on generic Lorentzian backgrounds is the use of a local regulator, which keeps the theory covariant. As a proof of concept, the developed methods are used to show that non-trivial fixed points arise in quantum field theories in a thermal state and in the case of quantum fields in the Bunch-Davies state on the de Sitter spacetime.