论文标题
SCORENET:学习基于变压器的组织病理学图像分类的非均匀注意和增强
ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification
论文作者
论文摘要
高分辨率图像和详尽的局部注释成本的良好成本阻碍了数字病理学的进展。用于对病理图像进行分类的常用范式是基于斑块的处理,该处理通常包含多个实例学习(MIL)以汇总局部斑块级表示,从而产生图像级预测。但是,诊断相关的区域只能占整个组织的一小部分,而当前的基于MIL的方法通常会统一地处理图像,从而丢弃相互作用的相互作用。为了减轻这些问题,我们提出了Scorenet,Scorenet是一种新的有效的变压器,利用可区分的建议阶段来提取区分图像区域并相应地专用计算资源。提出的变压器利用了一些动态推荐的高分辨率区域的本地和全球关注,以有效的计算成本。我们通过利用图像的语义分布来指导数据混合并产生连贯的样品标签对,进一步介绍了一种新型的混合数据实践,即SCORIX。 Scoremix令人尴尬地简单,并减轻了先前增强的陷阱,这假设了统一的语义分布,并有可能错误地标签样品。对血久毒素和曙红(H&E)的三个乳腺癌组织学数据集(H&E)的三个乳腺癌组织学数据集(H&E)的彻底实验和消融研究已经验证了我们的方法优于先前的艺术,包括基于变压器的肿瘤区域(TORIS)分类的模型。与其他混合增强变体相比,配备了拟议的得分增强的ScoreNET表现出更好的概括能力,并获得了新的最新结果(SOTA)结果,仅50%的数据。最后,ScoreNet产生了高疗效,并且胜过SOTA有效变压器,即TransPath和SwintransFormer。
Progress in digital pathology is hindered by high-resolution images and the prohibitive cost of exhaustive localized annotations. The commonly used paradigm to categorize pathology images is patch-based processing, which often incorporates multiple instance learning (MIL) to aggregate local patch-level representations yielding image-level prediction. Nonetheless, diagnostically relevant regions may only take a small fraction of the whole tissue, and current MIL-based approaches often process images uniformly, discarding the inter-patches interactions. To alleviate these issues, we propose ScoreNet, a new efficient transformer that exploits a differentiable recommendation stage to extract discriminative image regions and dedicate computational resources accordingly. The proposed transformer leverages the local and global attention of a few dynamically recommended high-resolution regions at an efficient computational cost. We further introduce a novel mixing data-augmentation, namely ScoreMix, by leveraging the image's semantic distribution to guide the data mixing and produce coherent sample-label pairs. ScoreMix is embarrassingly simple and mitigates the pitfalls of previous augmentations, which assume a uniform semantic distribution and risk mislabeling the samples. Thorough experiments and ablation studies on three breast cancer histology datasets of Haematoxylin & Eosin (H&E) have validated the superiority of our approach over prior arts, including transformer-based models on tumour regions-of-interest (TRoIs) classification. ScoreNet equipped with proposed ScoreMix augmentation demonstrates better generalization capabilities and achieves new state-of-the-art (SOTA) results with only 50% of the data compared to other mixing augmentation variants. Finally, ScoreNet yields high efficacy and outperforms SOTA efficient transformers, namely TransPath and SwinTransformer.