论文标题
平均场失调模型中的平衡波动
Equilibrium Fluctuations in Mean-field Disordered Models
论文作者
论文摘要
呈现随机一阶转变的玻璃的平均场模型表现出高度非平凡的波动。在以前的研究基础上,我们在这里为所有均衡条件提供了一个完全定量的框架。通过复制方法,我们评估了热力学极限周围重叠的高斯波动,将它们分解为每个状态内部的热波动,并在不同状态之间的异质波动中分解。我们首先测试并将我们的分析结果与P-Spin球形模型和随机正交模型的数值模拟结果进行比较,然后分析随机Lorentz气体。在所有情况下,都获得了强有力的定量协议。因此,我们的分析提供了一个强大的方案,可确定这些范式玻璃模型的平均场景处理的关键有限大小(或有限维度)的校正。
Mean-field models of glasses that present a random first order transition exhibit highly non-trivial fluctuations. Building on previous studies that focused on the critical scaling regime, we here obtain a fully quantitative framework for all equilibrium conditions. By means of the replica method we evaluate Gaussian fluctuations of the overlaps around the thermodynamic limit, decomposing them in thermal fluctuations inside each state and heterogeneous fluctuations between different states. We first test and compare our analytical results with numerical simulation results for the p-spin spherical model and the random orthogonal model, and then analyze the random Lorentz gas. In all cases, a strong quantitative agreement is obtained. Our analysis thus provides a robust scheme for identifying the key finite-size (or finite-dimensional) corrections to the mean-field treatment of these paradigmatic glass models.