论文标题

银河宇宙射线对神经元损伤的纳米级模拟

Nano-scale simulation of neuronal damage by galactic cosmic rays

论文作者

Peter, Jonah S., Schuemann, Jan, Held, Kathryn D., McNamara, Aimee L.

论文摘要

复杂的混合离子辐射场对神经元功能的影响在很大程度上尚未开发。在这里,我们对与现实的Cornu氨1(CA1)锥体神经元几何形状相关的纳米级物理学进行了完整分析。 我们模拟了当前在NASA空间辐射实验室银河系宇宙射线模拟器(GCRSIM)中使用的整个33个离子能量束通量分布。我们使用该工具进行粒子模拟(TOPA)和TOPAS-NBIO MONTE CARLO轨道结构模拟工具包,以评估纳米尺度上不同神经元室的剂量学,物理过程和通量统计。我们还对完整的GCRSIM分布和简化的6个离子能谱(SIMGCRSIM)进行了比较。 我们表明,在所有物理过程中,电离介导了大多数能量沉积$(68 \ pm 1 \%)$,尽管振动激发是最丰富的(所有能量沉积事件的$ 70 \ pm 2 \%$)。我们报告说,质子和$α$粒子的神经元能量沉积在与任务相关的能量下的一级颗粒能量增加,大约夸张。我们还证明了树突段照射概率与神经元吸收剂量之间的指数关系。最后,我们发现GCRSIM和SIMGCRSIM通量分布之间的平均物理反应没有显着差异。 据我们所知,这是使用GCRSIM和SIMGCRSIM VULUNCE分布的现实神经元几何形状的首次纳米级模拟研究。预计此处介绍的结果将有助于解释未来的实验结果,并有助于指导未来的研究设计。

The effects of complex, mixed-ion radiation fields on neuronal function remain largely unexplored. Here, we present a complete analysis of the nano-scale physics associated with broad-spectrum galactic cosmic ray (GCR) irradiation in a realistic cornu ammonis 1 (CA1) pyramidal neuron geometry. We simulate the entire 33 ion-energy beam fluence distribution currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim). We use the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits to assess the dosimetry, physics processes, and fluence statistics of different neuronal compartments at the nanometer scale. We also make comparisons between the full GCRSim distribution and a simplified 6 ion-energy spectrum (SimGCRSim). We show that across all physics processes, ionizations mediate the majority of the energy deposition $(68 \pm 1\%)$, though vibrational excitations are the most abundant ($70 \pm 2\%$ of all energy deposition events). We report that neuronal energy deposition by proton and $α$-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We also demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose. Finally, we find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim fluence distributions. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim fluence distributions. The results presented here are expected to aid in the interpretation of future experimental results and help guide future study designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源