论文标题

通过湍流破裂对亚欣兹气泡产生的实验观测和模型

Experimental observations and modeling of sub-Hinze bubble production by turbulent bubble break-up

论文作者

Ruth, Daniel J., Aiyer, Aditya K., Rivière, Aliénor, Perrard, Stéphane, Deike, Luc

论文摘要

我们介绍了相对于Hinze Scale $ d_ \ Mathrm {H} $的大型大型大小尺寸的实验,该规模是通过表面张力平衡湍流应力,在湍流中分解的尺度。 For cavities with initial sizes $d_0$ much larger than $d_\mathrm{H}$ (probing up to $d_0 / d_\mathrm{H} = 8.3$), the size distribution of bubbles smaller than $d_\mathrm{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter.涉及大气泡变形的韧带的毛细管不稳定性在视觉上显示出是为了产生小气泡的原因。转向单个分手事件的动态三维测量,我们描述了分手的儿童尺寸分布和形成的子气泡的数量,作为$ d_0 / d_ \ mathrm {h h} $的函数。然后,为了建模由湍流气泡破裂产生的气泡种群的演变,我们提出了一个人口平衡框架,其​​中分手涉及两个物理过程:对父母气泡的惯性变形,以设置大儿童气泡的大小,以及设定小儿童气泡大小的毛细血管不稳定。一种蒙特卡洛方法用于构建儿童大小分布,模拟随机分裂受我们的实验测量以及对毛细血管在小气泡产生中的作用的理解。这种方法在湍流中大空气腔分解过程中气泡尺寸分布的实验时间演变。

We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_\mathrm{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_\mathrm{H}$ (probing up to $d_0 / d_\mathrm{H} = 8.3$), the size distribution of bubbles smaller than $d_\mathrm{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter. The capillary instability of ligaments involved in the deformation of the large bubbles is shown visually to be responsible for the creation of the small ones. Turning to dynamical, three-dimensional measurements of individual break-up events, we describe the break-up child size distribution and the number of child bubbles formed as a function of $d_0 / d_\mathrm{H}$. Then, to model the evolution of a population of bubbles produced by turbulent bubble break-up, we propose a population balance framework in which break-up involves two physical processes: an inertial deformation to the parent bubble that sets the size of large child bubbles, and a capillary instability that sets the size of small child bubbles. A Monte Carlo approach is used to construct the child size distribution, with simulated stochastic break-ups constrained by our experimental measurements and the understanding of the role of capillarity in small bubble production. This approach reproduces the experimental time evolution of the bubble size distribution during the disintegration of large air cavities in turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源