论文标题
解释用于检测引力波的机器学习模型
Interpreting a Machine Learning Model for Detecting Gravitational Waves
论文作者
论文摘要
我们描述了翻译研究的案例研究,将开发的用于计算机视觉的可解释性技术应用于用于搜索和查找引力波的机器学习模型。我们研究的模型经过训练,以检测非高斯和非平稳的晚期激光干涉仪重力波观测(LIGO)数据中的黑洞合并事件。当机器学习模型处理的高级LIGO数据中,我们对包含真实引力波信号,噪声异常和纯晚期LIGO噪声的响应产生了可视化。我们的发现阐明了这些机器学习模型中各个神经元的反应。进一步的分析表明,网络的不同部分似乎专门研究本地特征和全局特征,并且这种差异似乎植根于网络的分支结构以及Ligo检测器的噪声特征。我们认为,使这些“黑匣子”模型变白的努力可以建议未来的研究途径,并帮助为引力波天体物理学的可解释的机器学习模型设计。
We describe a case study of translational research, applying interpretability techniques developed for computer vision to machine learning models used to search for and find gravitational waves. The models we study are trained to detect black hole merger events in non-Gaussian and non-stationary advanced Laser Interferometer Gravitational-wave Observatory (LIGO) data. We produced visualizations of the response of machine learning models when they process advanced LIGO data that contains real gravitational wave signals, noise anomalies, and pure advanced LIGO noise. Our findings shed light on the responses of individual neurons in these machine learning models. Further analysis suggests that different parts of the network appear to specialize in local versus global features, and that this difference appears to be rooted in the branched architecture of the network as well as noise characteristics of the LIGO detectors. We believe efforts to whiten these "black box" models can suggest future avenues for research and help inform the design of interpretable machine learning models for gravitational wave astrophysics.