论文标题

量子球上的levi-civita连接

Levi-Civita connections on quantum spheres

论文作者

Arnlind, Joakim, Ilwale, Kwalombota, Landi, Giovanni

论文摘要

我们在Quantum 2-Sphere和3-Sphere上介绍了$ Q $ - 构造的连接,以类似于$ q $ defformed的派生来满足扭曲的莱布尼兹规则。我们表明,这种连接始终存在于投影模块上。此外,引入了公制兼容性的条件,并给出了明确的公式,在自由模块上参数所有度量连接。在量子3-sphere上,引入了Q形成的扭转FreeNESS条件,我们为一般指标类别的Levi-Civita连接的ChristOffel符号提供了明确的表达式。我们还对量子2-Sphere上一类射影模块进行了度量连接。最后,我们概述了具有(左)协变量和相关量子切线空间的任何HOPF代数的概括。

We introduce $q$-deformed connections on the quantum 2-sphere and 3-sphere, satisfying a twisted Leibniz rule in analogy with $q$-deformed derivations. We show that such connections always exist on projective modules. Furthermore, a condition for metric compatibility is introduced, and an explicit formula is given, parametrizing all metric connections on a free module. On the quantum 3-sphere, a q-deformed torsion freeness condition is introduced and we derive explicit expressions for the Christoffel symbols of a Levi-Civita connection for a general class of metrics. We also give metric connections on a class of projective modules over the quantum 2-sphere. Finally, we outline a generalization to any Hopf algebra with a (left) covariant calculus and associated quantum tangent space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源