论文标题

与异性恋图的图形神经网络:调查

Graph Neural Networks for Graphs with Heterophily: A Survey

论文作者

Zheng, Xin, Wang, Yi, Liu, Yixin, Li, Ming, Zhang, Miao, Jin, Di, Yu, Philip S., Pan, Shirui

论文摘要

近年来,已经见证了图形神经网络(GNN)的快速发展,这些发展使无数的图形分析任务和应用受益。通常,大多数GNN都取决于同质的假设,即属于同一类的节点更有可能连接。然而,作为在许多现实世界中的无处不在的图形特性,异性恋,即带有不同标签的节点往往会链接,显着限制了量身定制的同质同质膜GNN的性能。因此,异性图的GNN正在增加研究的注意力,以增强杂质的图形学习。在本文中,我们对异性图的GNN进行了全面的综述。具体而言,我们提出了一种系统的分类法,该分类法基本上控制了现有的异性GNN模型,以及一般摘要和详细的分析。此外,我们讨论了图形异形与各种图形研究领域之间的相关性,旨在促进在图表研究社区中跨多种实用应用和学习任务的更有效的GNN的开发。最后,我们指出了使用GNN的促进和刺激更多未来研究和应用的潜在方向。

Recent years have witnessed fast developments of graph neural networks (GNNs) that have benefited myriads of graph analytic tasks and applications. In general, most GNNs depend on the homophily assumption that nodes belonging to the same class are more likely to be connected. However, as a ubiquitous graph property in numerous real-world scenarios, heterophily, i.e., nodes with different labels tend to be linked, significantly limits the performance of tailor-made homophilic GNNs. Hence, GNNs for heterophilic graphs are gaining increasing research attention to enhance graph learning with heterophily. In this paper, we provide a comprehensive review of GNNs for heterophilic graphs. Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models, along with a general summary and detailed analysis. Furthermore, we discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs across a spectrum of practical applications and learning tasks in the graph research community. In the end, we point out the potential directions to advance and stimulate more future research and applications on heterophilic graph learning with GNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源