论文标题

铺路曲霉理论

Equivariant Kazhdan-Lusztig theory of paving matroids

论文作者

Karn, Trevor, Nasr, George, Proudfoot, Nicholas, Vecchi, Lorenzo

论文摘要

我们研究了均等的kazhdan-lusztig多项式,epariasiant逆kazhdan-lusztig多项式以及均等的矩阵z-聚一分析剂在放松压力增生的宽松的操作下发生了变化。这使我们能够在许多示例中计算这些多项式用于任意铺路的矩形,包括与施用Mathieu组动作的Steiner Systems相关的各种矩形。

We study the way in which equivariant Kazhdan-Lusztig polynomials, equivariant inverse Kazhdan-Lusztig polynomials, and equivariant Z-polynomials of matroids change under the operation of relaxation of a collection of stressed hyperplanes. This allows us to compute these polynomials for arbitrary paving matroids, which we do in a number of examples, including various matroids associated with Steiner systems that admit actions of Mathieu groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源