论文标题
在量化类别的前膜下submonads上
On presheaf submonads of quantale enriched categories
论文作者
论文摘要
本文以$ v $ - 类别的境界为重点介绍了Presheaf Monad及其submonads,用于量子$ v $。首先,我们提出了两种使用$ v $ - 分发器的Presheaf Submonads的特征:一种基于$ v $ -Distributors的可接受类别,以及其他使用Beck-Chevalley条件上的$ V $ -Distributors。然后,我们专注于对代数的相应艾伦贝格 - 摩尔类别类别的研究,该类别的主要例子是正式的球单元和所谓的律师单元。
This paper focus on the presheaf monad and its submonads on the realm of $V$-categories, for a quantale $V$. First we present two characterisations of presheaf submonads, both using $V$-distributors: one based on admissible classes of $V$-distributors, and other using Beck-Chevalley conditions on $V$-distributors. Then we focus on the study of the corresponding Eilenberg-Moore categories of algebras, having as main examples the formal ball monad and the so-called Lawvere monad.