论文标题

六角弦台球的数值不集成性

Numerical non-integrability of Hexagonal string billiard

论文作者

Bialy, Misha, Youssin, Baruch

论文摘要

我们考虑了Hans L.Fetter引入的显着$ C^2 $ -Smooth Billiard表。它是通过常规六角形的字符串结构获得的,以特殊的值的长度值。有人认为这可能是伯克霍夫 - 波利茨基猜想的反示例。在本文中,我们以数值方式研究了该台球的行为,并在双曲线周期性轨道附近找到混乱的区域。它们很小,因为台球桌子几乎是圆形的。

We consider a remarkable $C^2$-smooth billiard table introduced by Hans L.Fetter. It is obtained by the string construction from a regular hexagon for a special value of the length of the string. It was suggested as a possible counter-example to the Birkhoff-Poritsky conjecture. In this paper, we investigate numerically the behavior of this billiard and find chaotic regions near hyperbolic periodic orbits. They are very small since the billiard table is nearly circular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源