论文标题
用高斯工艺绘制星际灰尘
Mapping Interstellar Dust with Gaussian Processes
论文作者
论文摘要
星际尘埃几乎损坏了几乎所有恒星观察,而对其进行核算对于测量恒星的物理特性至关重要。我们使用高斯工艺(GP)将灰尘分布建模为在空间上变化的潜在场,并开发出可能扩展到数百万天文观测的可能性模型和推理方法。两个因素对星际灰尘进行建模变得复杂。第一个是综合观察。数据来自地球上的有利位置,每个观察结果都是视线沿我们的未观察到的函数的组成部分,从而导致复杂的可能性和比经典GP推断更加困难的推理问题。第二并发症是尺度。恒星目录具有数百万的观察结果。为了应对这些挑战,我们开发了Ziggy,这是一种基于随机变化推断的综合观测值的GP推断的可扩展方法。我们研究了Ziggy的合成数据和Ananke数据集,Ananke数据集是银河系中具有数百万颗恒星的高保真机理模型。 Ziggy可靠地用良好的后部不确定性来可靠地注入空间灰尘图。
Interstellar dust corrupts nearly every stellar observation, and accounting for it is crucial to measuring physical properties of stars. We model the dust distribution as a spatially varying latent field with a Gaussian process (GP) and develop a likelihood model and inference method that scales to millions of astronomical observations. Modeling interstellar dust is complicated by two factors. The first is integrated observations. The data come from a vantage point on Earth and each observation is an integral of the unobserved function along our line of sight, resulting in a complex likelihood and a more difficult inference problem than in classical GP inference. The second complication is scale; stellar catalogs have millions of observations. To address these challenges we develop ziggy, a scalable approach to GP inference with integrated observations based on stochastic variational inference. We study ziggy on synthetic data and the Ananke dataset, a high-fidelity mechanistic model of the Milky Way with millions of stars. ziggy reliably infers the spatial dust map with well-calibrated posterior uncertainties.