论文标题

使用光谱时间图神经网络基于方面的情感分析

Aspect Based Sentiment Analysis Using Spectral Temporal Graph Neural Network

论文作者

Chakraborty, Abir

论文摘要

基于方面的情感分析的目的是捕捉与不同方面相关的审稿人的情感。但是,审查句子的复杂性,在不同领域中发现的单词的特定用法的复杂性使得难以准确地预测情绪,总体而言是充满挑战的自然语言理解任务。虽然复发性神经网络,注意机制以及最近的基于图形的模型很普遍,但在本文中,我们提出了基于图形傅立叶变换的网络,具有在光谱域中创建的特征。尽管这种方法在预测域中取得了巨大的成功,但尚未对任何自然语言处理任务进行较早探索。该方法依赖于从原始数据中创建和学习基础图,从而使用邻接矩阵移动到图形傅立叶域。随后,傅立叶变换用于切换到创建新功能的频率(频谱)域。事实证明,这些一系列的转型在学习正确的表示方面非常有效,因为我们发现我们的模型在Semeval-2014数据集(即“笔记本电脑”和“餐厅”域)上都取得了最佳结果。我们提出的模型还发现了来自电子商务领域的其他两个最近提出的数据集的竞争结果。

The objective of Aspect Based Sentiment Analysis is to capture the sentiment of reviewers associated with different aspects. However, complexity of the review sentences, presence of double negation and specific usage of words found in different domains make it difficult to predict the sentiment accurately and overall a challenging natural language understanding task. While recurrent neural network, attention mechanism and more recently, graph attention based models are prevalent, in this paper we propose graph Fourier transform based network with features created in the spectral domain. While this approach has found considerable success in the forecasting domain, it has not been explored earlier for any natural language processing task. The method relies on creating and learning an underlying graph from the raw data and thereby using the adjacency matrix to shift to the graph Fourier domain. Subsequently, Fourier transform is used to switch to the frequency (spectral) domain where new features are created. These series of transformation proved to be extremely efficient in learning the right representation as we have found that our model achieves the best result on both the SemEval-2014 datasets, i.e., "Laptop" and "Restaurants" domain. Our proposed model also found competitive results on the two other recently proposed datasets from the e-commerce domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源