论文标题
基于原子的有限变形连续性膜模型,用于单层过渡金属二甲化物
An Atomistic-based Finite Deformation Continuum Membrane Model for Monolayer Transition Metal Dichalcogenides
论文作者
论文摘要
提出了过渡金属二北元(TMD)单层的有限形成晶体弹性膜模型。单层TMD是多原子的二维(2D)晶体,其原子在三个平行表面中排列。在目前的公式中,TMD膜的变形构型通过其中表面的变形图表示,并且两个伸展的伸展图正常。基于晶体弹性的运动规则用于表达TMD的变形键长和键角,以连续性菌株的形式表示。 TMD膜的连续性高弹性应变能是根据其原子间电位配制的。在本构之间,还考虑了两个简单的TMD晶格之间的相对移位。开发了使用B-Splines的平滑有限元框架来数字实现当前的连续膜模型。所提出的模型将基于晶体弹性的膜膜理论(例如石墨烯)概括为多原子TMD TMD晶体膜。通过数值结果证明了相对移位和两个正常伸展的意义。所提出的基于原子的连续体模型可以准确匹配材料模量,复杂的持续后扎后变形以及纯原子模拟预测的平衡能量。它还准确地重现了包含数千万原子的大区块TMD样品的实验结果。
A finite-deformation crystal-elasticity membrane model for Transition Metal Dichalcogenide (TMD) monolayers is presented. Monolayer TMDs are multi-atom-thick two-dimensional (2D) crystalline membranes having atoms arranged in three parallel surfaces. In the present formulation, the deformed configuration of a TMD-membrane is represented through the deformation map of its middle surface and two stretches normal to the middle surface. Crystal-elasticity based kinematic rules are employed to express the deformed bond lengths and bond angles of TMDs in terms of the continuum strains. The continuum hyper-elastic strain energy of the TMD membrane is formulated from its inter-atomic potential. The relative shifts between two simple lattices of TMDs are also considered in the constitutive relation. A smooth finite element framework using B-splines is developed to numerically implement the present continuum membrane model. The proposed model generalizes the crystal-elasticity-based membrane theory of purely 2D membranes, such as graphene, to the multi-atom-thick TMD crystalline membranes. The significance of relative shifts and two normal stretches are demonstrated through numerical results. The proposed atomistic-based continuum model accurately matches the material moduli, complex post-buckling deformations, and the equilibrium energies predicted by the purely atomistic simulations. It also accurately reproduces the experimental results for large-area TMD samples containing tens of millions of atoms.