论文标题
STG-GAN:用于城市铁路运输系统中短期乘客流量预测的时空图生成对抗网络
STG-GAN: A spatiotemporal graph generative adversarial networks for short-term passenger flow prediction in urban rail transit systems
论文作者
论文摘要
短期乘客流量预测是更好地管理城市铁路运输(URT)系统的重要但艰巨的任务。一些新兴的深度学习模型为提高短期预测准确性提供了良好的见解。但是,URT系统中存在许多复杂的时空依赖性。大多数以前的方法仅将地面真实和预测之间的绝对误差视为优化目标,该目标无法说明预测的空间和时间限制。此外,许多现有的预测模型都引入了复杂的神经网络层,以提高准确性,同时忽略其训练效率和记忆占用率,从而减少了适用于现实世界的机会。为了克服这些局限性,我们提出了一种新型的基于深度学习的时空图生成网络(STG-GAN)模型,具有较高的预测准确性,更高的效率和较低的记忆占用率,以预测URT网络的短期乘客流。我们的模型由两个主要部分组成,这些部分以对抗性学习方式进行了优化:(1)一个发电机网络,包括门控时间传统网络(TCN)和重量共享图形卷积网络(GCN),以捕获结构性时空依赖性并以相对较小的计算负担生成预测; (2)一个歧视网络,包括空间歧视器和时间歧视器,以增强预测的空间和时间约束。 STG-GAN在北京地铁的两个大型现实世界数据集上进行评估。与几种最先进模型的比较说明了其优越性和鲁棒性。这项研究可以在进行短期乘客流动预测方面提供重要的经验,尤其是从现实世界应用的角度来看。
Short-term passenger flow prediction is an important but challenging task for better managing urban rail transit (URT) systems. Some emerging deep learning models provide good insights to improve short-term prediction accuracy. However, there exist many complex spatiotemporal dependencies in URT systems. Most previous methods only consider the absolute error between ground truth and predictions as the optimization objective, which fails to account for spatial and temporal constraints on the predictions. Furthermore, a large number of existing prediction models introduce complex neural network layers to improve accuracy while ignoring their training efficiency and memory occupancy, decreasing the chances to be applied to the real world. To overcome these limitations, we propose a novel deep learning-based spatiotemporal graph generative adversarial network (STG-GAN) model with higher prediction accuracy, higher efficiency, and lower memory occupancy to predict short-term passenger flows of the URT network. Our model consists of two major parts, which are optimized in an adversarial learning manner: (1) a generator network including gated temporal conventional networks (TCN) and weight sharing graph convolution networks (GCN) to capture structural spatiotemporal dependencies and generate predictions with a relatively small computational burden; (2) a discriminator network including a spatial discriminator and a temporal discriminator to enhance the spatial and temporal constraints of the predictions. The STG-GAN is evaluated on two large-scale real-world datasets from Beijing Subway. A comparison with those of several state-of-the-art models illustrates its superiority and robustness. This study can provide critical experience in conducting short-term passenger flow predictions, especially from the perspective of real-world applications.