论文标题
复杂网络中的拉普拉斯路径:信息核心来自熵过渡
Laplacian paths in complex networks: information core emerges from entropic transitions
论文作者
论文摘要
复杂的网络通常在多个相互交织的尺度上展现出丰富的建筑。预计信息途径将遍及这些量表,反映了网络拓扑分析并未表现出的结构见解。此外,小世界效应与不同的网络层次结构相关,使同时存在的介观结构和功能核心的识别复杂化。我们基于信息扩散以进一步阐明这些问题的信息扩散,对整个复杂网络的有效信息途径进行了沟通性分析。我们采用了各种崭新的理论技术,允许以下方式:(i)带来理论框架以量化节点之间信息扩散的可能性,(ii)确定复杂网络的临界量表和结构,无论其内在属性如何,(iii)在同步现象中表现出它们的动态相关性。通过结合这些想法,我们证明了复杂网络上的信息如何揭开不同的分辨率量表。使用计算技术,我们专注于熵过渡,发现通用中尺度对象,信息核心以及在复杂网络中控制信息处理。总的来说,这项研究阐明了允许新的理论技术为基于扩散距离引入未来重归其化的方法铺平道路。
Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate with the different network hierarchies complicating the identification of coexisting mesoscopic structures and functional cores. We present a communicability analysis of effective information pathways throughout complex networks based on information diffusion to shed further light on these issues. We employ a variety of brand-new theoretical techniques allowing for: (i) bring the theoretical framework to quantify the probability of information diffusion among nodes, (ii) identify critical scales and structures of complex networks regardless of their intrinsic properties, and (iii) demonstrate their dynamical relevance in synchronization phenomena. By combining these ideas, we evidence how the information flow on complex networks unravels different resolution scales. Using computational techniques, we focus on entropic transitions, uncovering a generic mesoscale object, the information core, and controlling information processing in complex networks. Altogether, this study sheds much light on allowing new theoretical techniques paving the way to introduce future renormalization group approaches based on diffusion distances.