论文标题
关于现实世界公共交通图像的对象检测的复杂性,以进行社会疏远测量
On the Complexity of Object Detection on Real-world Public Transportation Images for Social Distancing Measurement
论文作者
论文摘要
在公共空间中的社会距离已成为有助于减少Covid-19-19大流行的影响的重要方面。利用机器学习的最新进展,文献中有许多研究通过在公共空间中使用监视摄像机通过对象检测实施社会疏远。但是,迄今为止,还没有对公共交通工具的社会距离进行衡量的研究。公共交通环境有一些独特的挑战,包括一些低分辨率的图像和相机位置,这些图像和相机位置可能导致乘客的部分阻塞,这使得执行准确的检测具有挑战性。因此,在本文中,我们研究了对公共交通进行准确的社会距离测量的挑战。我们使用从伦敦地下和公交网络中拍摄的现实世界录像对几种最先进的对象检测算法进行基准测试。这项工作突出了对当前公共交通摄像机的图像进行社交距离测量的复杂性。此外,利用域知识对预期乘客行为的了解,我们尝试使用各种策略来提高检测的质量,并仅使用香草对象检测而显示出改进。
Social distancing in public spaces has become an essential aspect in helping to reduce the impact of the COVID-19 pandemic. Exploiting recent advances in machine learning, there have been many studies in the literature implementing social distancing via object detection through the use of surveillance cameras in public spaces. However, to date, there has been no study of social distance measurement on public transport. The public transport setting has some unique challenges, including some low-resolution images and camera locations that can lead to the partial occlusion of passengers, which make it challenging to perform accurate detection. Thus, in this paper, we investigate the challenges of performing accurate social distance measurement on public transportation. We benchmark several state-of-the-art object detection algorithms using real-world footage taken from the London Underground and bus network. The work highlights the complexity of performing social distancing measurement on images from current public transportation onboard cameras. Further, exploiting domain knowledge of expected passenger behaviour, we attempt to improve the quality of the detections using various strategies and show improvement over using vanilla object detection alone.