论文标题
使用几何方法的多面体内核计算
Polyhedron Kernel Computation Using a Geometric Approach
论文作者
论文摘要
多面体的几何内核(或简单的核)是整个多面体可见的一组。尽管文献中已经解决了多边形的核的计算,但对于Polyhedra提出了更少的方法。内核估计的最公认的解决方案是解决线性编程问题。相反,我们提出了一种几何方法,该方法扩展了我们先前的方法,优化了它在预处理步骤中预测所有计算,并介绍了几何精确谓词的使用。实验结果表明,我们的方法比代数方法对通用镶嵌的方法更有效,并且在检测多面体是否不是星形时。还提供了有关该方法利弊的技术实施和讨论的详细信息。
The geometric kernel (or simply the kernel) of a polyhedron is the set of points from which the whole polyhedron is visible. Whilst the computation of the kernel for a polygon has been largely addressed in the literature, fewer methods have been proposed for polyhedra. The most acknowledged solution for the kernel estimation is to solve a linear programming problem. On the contrary, we present a geometric approach that extends our previous method, optimizes it anticipating all calculations in a pre-processing step and introduces the use of geometric exact predicates. Experimental results show that our method is more efficient than the algebraic approach on generic tessellations and in detecting if a polyhedron is not star-shaped. Details on the technical implementation and discussions on pros and cons of the method are also provided.