论文标题
使用非线性原始二次近端分裂的嵌入式定量MRI T1RHO映射
Embedded quantitative MRI T1rho mapping using non-linear primal-dual proximal splitting
论文作者
论文摘要
定量MRI(QMRI)方法允许通过提供诊断评估或组织特性预测的数值来降低临床MRI的主观性。但是,QMRI测量通常比解剖成像相比,由于需要多个测量值,例如放松时间映射的对比度有所不同。为了减少扫描时间,可以将不足的数据与压缩感测重建技术结合使用。典型的CS重建首先重建了一组与不同对比度相对应的复杂值集合的图像,然后是拟合的非线性信号模型,以获得参数图。我们为T1RHO映射提出了一种直接嵌入式的重建方法。所提出的方法将在已知的信号模型上大写,以使用非线性优化模型直接重建所需的参数图。提出的重建方法还允许直接正规化感兴趣的参数图,并大大减少了重建中未知数的数量。我们使用来自2D Phantom和2D笛卡尔的小鼠肾脏样本的径向采样数据测试提出的模型。我们将嵌入式重建模型与两个CS重建模型进行了比较,在笛卡尔测试案例中也将iFFT进行了比较。所提出的嵌入式模型在两个测试案例上的参考方法都优于参考方法,尤其是在较高的加速度因素上。
Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To reduce the scanning time, undersampled data may be combined with compressed sensing reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain the parameter maps. We propose a direct, embedded reconstruction method for T1rho mapping. The proposed method capitalizes on a known signal model to directly reconstruct the desired parameter map using a non-linear optimization model. The proposed reconstruction method also allows directly regularizing the parameter map of interest, and greatly reduces the number of unknowns in the reconstruction. We test the proposed model using a simulated radially sampled data from a 2D phantom and 2D cartesian ex vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model to two CS reconstruction models, and in the cartesian test case also iFFT. The proposed, embedded model outperformed the reference methods on both test cases, especially with higher acceleration factors.