论文标题
Hénon地图的半群的动力学
Dynamics of semigroups of Hénon maps
论文作者
论文摘要
本文的目标是两个折。首先,我们探讨了$ \ mathbb {c}^2 $的多项式自动形态的半群的动态,该动态是由有限的Hénon地图集合而生成的。特别是,我们构建正和负动态的绿色功能$ g _ {\ MATHSCR {g}}^\ pm $和相应的动态绿色电流$μ_ {\ Mathscr {g}}}^\ pm $,用于用$} $ cltery $ clater $ clation $} $ { Semigroup $ \ Mathcal {s} $的正(或负)朱莉娅集合,即$ \ Mathcal {J} _ {\ Mathcal {s}}}}^+$(或$ \ Mathcal {j} _ {地图,在Semigroup $ \ Mathcal {S} $中。此外,我们证明了$μ_{\ MathScr {g}}^+$在$ \ Mathcal {J} _ {\ Mathcal {\ Mathcal {s}}}^+$的整个支持下,也是唯一的正面封闭$(1,1,1)$ - 当前支持的$ \ Mathcal}满足一个半不变关系,该关系取决于生成集$ {\ mathscr {g}} $。 其次,我们研究了hénon地图的非自治序列的动态,例如$ \ {h_k \} $,该序列包含在semigroup $ \ nathcal {s} $中。同样,如上所述,我们也构建了非自治的动力学正和负绿色功能以及相应的动态绿色电流。此外,我们使用格林功能的属性得出的结论是,任何此类序列的非自主吸引盆地$ \ {h_k \} $共享一个常见的吸引人的固定点,是biholomorphic的,至$ \ mathbb {c}^2。
The goal of this article is two fold. Firstly, we explore the dynamics of a semigroup of polynomial automorphisms of $\mathbb{C}^2$, generated by a finite collection of Hénon maps. In particular, we construct the positive and negative dynamical Green's functions $G_{\mathscr{G}}^\pm$ and the corresponding dynamical Green's currents $μ_{\mathscr{G}}^\pm$ for a semigroup $\mathcal{S}$, generated by a collection ${\mathscr{G}}.$ Using them, we show that the positive (or negative) Julia set of the semigroup $\mathcal{S}$, i.e., $\mathcal{J}_{\mathcal{S}}^+$ (or $\mathcal{J}_{\mathcal{S}}^-$) is equal to the closure of the union of individual positive (or negative) Julia sets of the maps, in the semigroup $\mathcal{S}$. Furthermore, we prove that $μ_{\mathscr{G}}^+$ is supported on the whole of $\mathcal{J}_{\mathcal{S}}^+$ and is also the unique positive closed $(1,1)$-current supported on $\mathcal{J}_{\mathcal{S}}^+$, satisfying a semi-invariance relation that depends on the generating set ${\mathscr{G}}$. Secondly, we study the dynamics of a non-autonomous sequence of Hénon maps, say $\{h_k\}$, contained in the semigroup $\mathcal{S}$. Similarly, as above, here too, we construct the non-autonomous dynamical positive and negative Green's function and the corresponding dynamical Green's currents. Further, we use the properties of Green's function to conclude that the non-autonomous attracting basin of any such sequence $\{h_k\}$, sharing a common attracting fixed point, is biholomorphic to $\mathbb{C}^2.$