论文标题

快速算法,用于超级订单-3张量分解

Fast algorithm for overcomplete order-3 tensor decomposition

论文作者

Ding, Jingqiu, d'Orsi, Tommaso, Liu, Chih-Hung, Tiegel, Stefan, Steurer, David

论文摘要

我们开发了第一个快速频谱算法,用于分解$ \ mathbb {r}^d $排名的随机三阶张量,最高为$ o(d^{3/2}/\ text {polylog}(d))$。我们的算法仅涉及简单的线性代数操作,并且可以在当前矩阵乘法时间下在时间$ o(d^{6.05})$中恢复所有组件。 在这项工作之前,只能通过方形的总和[MA,Shi,Steurer 2016]实现可比的保证。相反,快速算法[Hopkins,Schramm,Shi,Steurer 2016]只能分解$ O的排名张量(d^{4/3}/\ text {polylog}(d))$。 我们的算法结果取决于两种关键成分。将三阶张量的清洁提升到六阶张量,可以用张量网络的语言表示。将张量网络仔细分解为一系列矩形矩阵乘法,这使我们能够快速实现该算法。

We develop the first fast spectral algorithm to decompose a random third-order tensor over $\mathbb{R}^d$ of rank up to $O(d^{3/2}/\text{polylog}(d))$. Our algorithm only involves simple linear algebra operations and can recover all components in time $O(d^{6.05})$ under the current matrix multiplication time. Prior to this work, comparable guarantees could only be achieved via sum-of-squares [Ma, Shi, Steurer 2016]. In contrast, fast algorithms [Hopkins, Schramm, Shi, Steurer 2016] could only decompose tensors of rank at most $O(d^{4/3}/\text{polylog}(d))$. Our algorithmic result rests on two key ingredients. A clean lifting of the third-order tensor to a sixth-order tensor, which can be expressed in the language of tensor networks. A careful decomposition of the tensor network into a sequence of rectangular matrix multiplications, which allows us to have a fast implementation of the algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源