论文标题
广义超斑点物质 - 波波干涉法:具有复合脉冲的稳健原子传感器的量子工程
Generalized hyper-Ramsey-Bordé matter-wave interferometry: quantum engineering of robust atomic sensors with composite pulses
论文作者
论文摘要
使用超纳罗光学转换的新一类原子干扰正在将量子工程控制推向下一代传感器和量子门操作的高度精度。在这种情况下,我们提出了一种新的量子工程方法,用于Ramsey-Bordé干涉法引入了具有量身定制的脉冲持续时间,狂犬场振幅,频率失调和激光相位步长的多个复合激光脉冲。我们通过微调光激发参数的微调控制,从而探索了低于$ 10^-18 $分数准确度的量子计量,并以低于$ 10^-18 $的分数准确度来探索量子计量,从而导致旋转型干扰物受到抗光度的影响,从而抗光偏移,抗光灯与激光 - 探针磁场变化。我们审查合作复合脉冲方案,以生成强大的Ramsey-Bordé,Mach-Zehnder和Double-Loop原子传感器,这些传感器与与多普勒移位和轻型速度相关的测量失真屏蔽,并耦合到脉冲面积误差。引入了易耐故障自动平衡的超平衡超平衡计,以消除在整个探测询问协议中可能发生的几种技术激光脉冲缺陷。具有复合脉冲和超冷原子源的量子传感器应在检测加速度和旋转诱导相移的高度准确性上,对基本物理的测试有了很大的改善,而基本物理的测试则具有超锁定的方式,同时铺平了途径,从而使原子质干扰时间的新概念具有高度高度敏感性。
A new class of atomic interferences using ultra-narrow optical transitions are pushing quantum engineering control to a very high level of precision for a next generation of sensors and quantum gate operations. In such context, we propose a new quantum engineering approach to Ramsey-Bordé interferometry introducing multiple composite laser pulses with tailored pulse duration, Rabi field amplitude, frequency detuning and laser phase-step. We explore quantum metrology with hyper-Ramsey and hyper-Hahn-Ramsey clocks below the $10^-18$ level of fractional accuracy by a fine tuning control of light excitation parameters leading to spinor interferences protected against light-shift coupled to laser-probe field variation. We review cooperative composite pulse protocols to generate robust Ramsey-Bordé, Mach-Zehnder and double-loop atomic sensors shielded against measurement distortion related to Doppler-shifts and light-shifts coupled to pulse area errors. Fault-tolerant auto-balanced hyper-interferometers are introduced eliminating several technical laser pulse defects that can occur during the entire probing interrogation protocol. Quantum sensors with composite pulses and ultra-cold atomic sources should offer a new level of high accuracy in detection of acceleration and rotation inducing phase-shifts, a strong improvement in tests of fundamental physics with hyper-clocks while paving the way to a new conception of atomic interferometers tracking space-time gravitational waves with a very high sensitivity.