论文标题
SN 1987a的二进制恒星祖细胞的核心折叠超新星的三维模拟
Three-dimensional simulation of a core-collapse supernova for a binary star progenitor of SN 1987A
论文作者
论文摘要
我们通过Urushibata等人的SN 1987a的二元进化祖细胞模型在三个空间维度中在三个空间维度中进行了自洽的,非旋转的核心偏转超新星模拟的结果。 (2018)。这个18.3太阳能祖先模型是从14和8个太阳质恒星的慢速生效演变而来的,它满足了大多数观察性约束,例如倒塌时赫尔茨普朗格 - 荷兰图中的红色到蓝色进化,寿命,总质量和总质量和位置,以及化学异常。我们的仿真是从球体对称的塌陷开始的,并在弹跳后10 ms映射到三维坐标,以遵循非球体水动力学演化。我们在反弹后350毫秒获得该祖先中微子驱动的休克复兴,导致形成新生的中子恒星,平均重力质量为1.35太阳能质量,自旋周期为0.1 s。我们还讨论了具有与SN 1987a相同特征的银河事件的引力波和中微子信号的可检测性。与观察到的值相比,在我们最后的模拟时间(爆炸后660毫秒),诊断爆炸能量虽然仍在增长(0.15敌人)(0.15敌人)(1.5敌人)。从模拟获得的56NI质量(0.01太阳能块)也小于SN 1987a(0.07太阳能块)的质量。在我们的3D模型中,包括旋转,磁场或更精致的中微子不透明度等长期模拟,包括几种缺失的物理成分,以弥合理论预测和观察到的值之间的间隙。
We present results from a self-consistent, non-rotating core-collapse supernova simulation in three spatial dimensions using a binary evolution progenitor model of SN 1987A by Urushibata et al. (2018). This 18.3 solar-mass progenitor model is evolved from a slow-merger of 14 and 8 solar-mass stars, and it satisfies most of the observational constraints such as red-to-blue evolution, lifetime, total mass and position in the Hertzsprung-Russell diagram at collapse, and chemical anomalies. Our simulation is initiated from a spherically symmetric collapse and mapped to the three-dimensional coordinates at 10 ms after bounce to follow the non-spherical hydrodynamics evolution. We obtain the neutrino-driven shock revival for this progenitor at 350 ms after bounce, leading to the formation of a newly-born neutron star with average gravitational mass of 1.35 solar mass and spin period of 0.1 s. We also discuss the detectability of gravitational wave and neutrino signals for a Galactic event with the same characteristics as SN 1987A. At our final simulation time (660 ms postbounce), the diagnostic explosion energy, though still growing, is smaller (0.15 foe) compared to the observed value (1.5 foe). The 56Ni mass obtained from the simulation (0.01 solar mass) is also smaller than the reported mass from SN 1987A (0.07 solar mass). Long-term simulation including several missing physical ingredients in our 3D models such as rotation, magnetic fields, or more elaborate neutrino opacity should be done to bridge the gap between the theoretical predictions and the observed values.