论文标题

使用粒子在动态环境中连续占用映射

Continuous Occupancy Mapping in Dynamic Environments Using Particles

论文作者

Chen, Gang, Dong, Wei, Peng, Peng, Alonso-Mora, Javier, Zhu, Xiangyang

论文摘要

近年来,提出了基于粒子的动态占用图,以模拟动态环境中的障碍。当前的基于粒子的地图描述了离散网格形式的占用状态,并遭受网格大小问题的困扰,其中大网格大小不利于运动计划,而小网格尺寸降低了效率并导致空白和不一致。为了解决这个问题,本文将基于粒子的地图概括为连续空间,并构建有效的3D以上的本地地图。提出了一个双结构子空间分裂范式,该范式由体素子空间分裂和新型金字塔样子空间分裂组成,提议传播颗粒并在考虑闭塞方面有效地更新地图。然后可以用粒子的权重估计地图空间中任意点的占用状态。为了进一步增强同时建模静态和动态障碍并最大程度地减少噪声的性能,使用了初始速度估计方法和混合模型。实验结果表明,我们的地图可以有效,有效地对动态障碍物和静态障碍物进行建模。与最先进的网格形成粒子地图相比,我们的地图实现了连续的占用估计,并显着提高了不同分辨率的性能。

Particle-based dynamic occupancy maps were proposed in recent years to model the obstacles in dynamic environments. Current particle-based maps describe the occupancy status in discrete grid form and suffer from the grid size problem, wherein a large grid size is unfavorable for motion planning, while a small grid size lowers efficiency and causes gaps and inconsistencies. To tackle this problem, this paper generalizes the particle-based map into continuous space and builds an efficient 3D egocentric local map. A dual-structure subspace division paradigm, composed of a voxel subspace division and a novel pyramid-like subspace division, is proposed to propagate particles and update the map efficiently with the consideration of occlusions. The occupancy status of an arbitrary point in the map space can then be estimated with the particles' weights. To further enhance the performance of simultaneously modeling static and dynamic obstacles and minimize noise, an initial velocity estimation approach and a mixture model are utilized. Experimental results show that our map can effectively and efficiently model both dynamic obstacles and static obstacles. Compared to the state-of-the-art grid-form particle-based map, our map enables continuous occupancy estimation and substantially improves the performance in different resolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源