论文标题
技术混合启用引擎和个性化通知:一种集成工具,可通过建议(Project Athena)来协助用户
A Tech Hybrid-Recommendation Engine and Personalized Notification: An integrated tool to assist users through Recommendations (Project ATHENA)
论文作者
论文摘要
Athena项目旨在开发用于解决信息过载的应用程序,主要集中于推荐系统(RSS),并具有现代系统的个性化和用户体验设计。使用了两种机器学习(ML)算法:(1)用于基于内容的过滤的TF-IDF(CBF); (2)使用矩阵分数分类 - 奇异值分解(SVD)使用协作滤波(CF)和平均值(归一化)用于CF的预测准确性。菲律宾农业,水生和自然资源研究与发展理事会学术研究与发展中的数据采样(PCAARRD)电子图书馆和项目Sarai出版物以及用作培训集的模拟数据,以生成三个RS过滤的项目的建议(CF,CBF,CB,CBF,以及项目的个性化版本,以及项目建议的个性化版本)。一系列的测试和TAM进行和讨论。调查结果使用户可以参与在线信息,并快速评估应用程序生产的项目。兼容性测试(COT)表明该应用程序与所有主要浏览器兼容,并且对移动设备友好。绩效测试(PT)推荐的V-参数规格和TAM评估结果表明与整体积极反馈密切相关,足以解决信息超载问题作为本文的核心。一个模块化体系结构介绍了有关信息过载的介绍,主要集中在现代系统的个性化和设计上。开发人员利用了两种ML算法,并原型化了该体系结构的简化版本。进行了一系列测试(COT和PT)和TAM评估。雅典娜项目添加了现代系统的UX功能设计。
Project ATHENA aims to develop an application to address information overload, primarily focused on Recommendation Systems (RSs) with the personalization and user experience design of a modern system. Two machine learning (ML) algorithms were used: (1) TF-IDF for Content-based filtering (CBF); (2) Classification with Matrix Factorization- Singular Value Decomposition(SVD) applied with Collaborative filtering (CF) and mean (normalization) for prediction accuracy of the CF. Data sampling in academic Research and Development of Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (PCAARRD) e-Library and Project SARAI publications plus simulated data used as training sets to generate a recommendation of items that uses the three RS filtering (CF, CBF, and personalized version of item recommendations). Series of Testing and TAM performed and discussed. Findings allow users to engage in online information and quickly evaluate retrieved items produced by the application. Compatibility-testing (CoT) shows the application is compatible with all major browsers and mobile-friendly. Performance-testing (PT) recommended v-parameter specs and TAM evaluations results indicate strongly associated with overall positive feedback, thoroughly enough to address the information-overload problem as the core of the paper. A modular architecture presented addressing the information overload, primarily focused on RSs with the personalization and design of modern systems. Developers utilized Two ML algorithms and prototyped a simplified version of the architecture. Series of testing (CoT and PT) and evaluations with TAM were performed and discussed. Project ATHENA added a UX feature design of a modern system.