论文标题
光伏太阳能建模的功能构建和选择
Feature Construction and Selection for PV Solar Power Modeling
论文作者
论文摘要
在工艺行业中使用太阳能可以减少温室气体排放,并使生产过程更具可持续性。但是,太阳能的间歇性质使其用法具有挑战性。建立一个模型来预测光伏(PV)发电,使决策者可以对冲能源短缺并进一步设计适当的操作。太阳能输出是时间序列数据取决于许多因素,例如辐照度和天气。根据历史数据,在本文中开发了用于1小时前1小时太阳能预测的机器学习框架。我们的方法将输入数据集扩展到更高维的Chebyshev多项式空间。然后,开发了一个特征选择方案,并具有约束的线性回归,以构建不同天气类型的预测变量。几项测试表明,所提出的方法比经典的机器学习方法(例如支持向量机(SVM),随机森林(RF)和梯度增强决策树(GBDT))的平均误差较低。
Using solar power in the process industry can reduce greenhouse gas emissions and make the production process more sustainable. However, the intermittent nature of solar power renders its usage challenging. Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages and further design proper operations. The solar power output is time-series data dependent on many factors, such as irradiance and weather. A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data. Our method extends the input dataset into higher dimensional Chebyshev polynomial space. Then, a feature selection scheme is developed with constrained linear regression to construct the predictor for different weather types. Several tests show that the proposed approach yields lower mean squared error than classical machine learning methods, such as support vector machine (SVM), random forest (RF), and gradient boosting decision tree (GBDT).