论文标题

通过覆盖范围和体积来表征欧几里得空间中的单位球

Characterizing unit spheres in Euclidean spaces via reach and volume

论文作者

Iwen, Mark, Schmidt, Benjamin, Tavakoli, Arman

论文摘要

令$ m $为$ \ mathbb {r}^n $的平滑,连接,紧凑的submanifold,没有边界和尺寸$ k \ geq 2 $。令$ \ mathbb {s}^k \ subset \ mathbb {r}^{k+1} \ subset \ subset \ mathbb {r}^n $表示$ k $ - dimesnional单位sphere。我们显示$ m $的达到一个等于1,那么它的音量满足$ \ text {vol}(m)\ geq \ text {vol}(\ mathbb {s}^k)$,仅当$ m $与$ \ $ \ mathbb {s}^k $一致时,只有$ m $仅在$ m $的情况下。

Let $M$ be a smooth, connected, compact submanifold of $\mathbb{R}^n$ without boundary and of dimension $k\geq 2$. Let $\mathbb{S}^k \subset \mathbb{R}^{k+1}\subset \mathbb{R}^n$ denote the $k$-dimesnional unit sphere. We show if $M$ has reach equal to one, then its volume satisfies $\text{vol}(M)\geq \text{vol}(\mathbb{S}^k)$ with equality holding only if $M$ is congruent to $\mathbb{S}^k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源