论文标题
在布鲁维尔的一些公理上
On some of Brouwer's axioms
论文作者
论文摘要
我们讨论直觉数学在建设性数学领域中的地位。我们讨论了布鲁沃尔(Brouwer)捍卫和使用的一些原则,但被主教拒绝,例如圆形原则,粉丝定理和律师定理。我们解释了它们在建设性数学的发展中的一些后果,例如Borel层次定理和直觉的Ramsey定理。在这个领域遵循的主教遵循的衡量和融合理论与布鲁维尔的一条路径不同。
We discuss the position of intuitionistic mathematics within the field of constructive mathematics. We discuss some principles defended and used by Brouwer but rejected by Bishop, like the Coninuity Principle, the Fan Theorem and the Bar Theorem. We explain some of their consequences in the development of constructive mathematics, like the Borel Hierarchy Theorem and the Intuitionistic Ramsey Theorem. We go into the theory of measure and integration as Bishop followed in this field a path different from Brouwer's.