论文标题
二维断头台填料的紧密近似算法
Tight Approximation Algorithms for Two Dimensional Guillotine Strip Packing
论文作者
论文摘要
在带状包装问题(SP)中,我们将获得一个垂直的半条$ [0,w] \ times [0,\ infty)$和一组$ n $ axis对准的矩形宽度,最多$ w $。目的是找到将所有矩形的非重叠包装填充到条带中,以便将包装的高度最小化。一个经过良好研究且经常使用的实用限制是仅允许那些可分离断头台的包装,即,可以通过递归应用一系列没有任何解决方案的任何物品的边缘到边缘 - 平行的切割(吉洛林剪切)来获得包装中的每个矩形。在本文中,我们研究了断头台带状堆积问题(GSP)的近似算法,即脱衣堆积问题,在该问题中,我们还需要填料需要可分开的断头台。这个问题概括了经典的垃圾箱包装问题,并使pan在相同的机器上最小化,因此已经是NP坚固的。此外,由于分区问题的减少,获得多项式时间$(3/2- \ varepsilon)$ - GSP的近似算法是NP-HARD,对于任何$ \ VAREPSILON> 0 $(完全像条件包装)。我们为GSP提供了匹配的多项式时间$(3/2+\ varepsilon)$ - 近似算法。此外,我们提出了一个伪多项式时间$(1+ \ varepsilon)$ - GSP的近似算法。这是令人惊讶的,因为获得伪多项式时间(一般)条带包装的$(5/4- \ varepsilon)$ - 近似算法是NP-HARD。因此,我们的结果基本上解决了多项式和伪多项式设置的GSP的近似性。
In the Strip Packing problem (SP), we are given a vertical half-strip $[0,W]\times[0,\infty)$ and a set of $n$ axis-aligned rectangles of width at most $W$. The goal is to find a non-overlapping packing of all rectangles into the strip such that the height of the packing is minimized. A well-studied and frequently used practical constraint is to allow only those packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip Packing problem where we require additionally that the packing needs to be guillotine separable. This problem generalizes the classical Bin Packing problem and also makespan minimization on identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the Partition problem, it is NP-hard to obtain a polynomial-time $(3/2-\varepsilon)$-approximation algorithm for GSP for any $\varepsilon>0$ (exactly as Strip Packing). We provide a matching polynomial time $(3/2+\varepsilon)$-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time $(1+\varepsilon)$-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a $(5/4-\varepsilon)$-approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial settings.