论文标题

胎儿功能磁共振成像数据的运动校正和体积重建

Motion Correction and Volumetric Reconstruction for Fetal Functional Magnetic Resonance Imaging Data

论文作者

Sobotka, Daniel, Ebner, Michael, Schwartz, Ernst, Nenning, Karl-Heinz, Taymourtash, Athena, Vercauteren, Tom, Ourselin, Sebastien, Kasprian, Gregor, Prayer, Daniela, Langs, Georg, Licandro, Roxane

论文摘要

运动校正是胎儿大脑功能磁共振成像(fMRI)的必不可少的预处理步骤,其目的是去除由胎儿运动和母体呼吸引起的伪像,从而抑制错误的信号相关性。胎儿功能磁共振成像的当前运动校正方法从特定的采集时间点中选择单个3D体积,而运动伪影作为参考量最少,并对运动校正时间序列的重建进行插值。如果没有低动力框架,并且如果重建不利用FMRI信号连续性的任何假设,则结果可能会受到影响。在这里,我们提出了一个新颖的框架,该框架通过使用异常运动校正和利用Huber L2正则化来估计高分辨率参考体积,以对运动校正后的胎儿脑FMRI进行堆栈内体积重建。我们进行了一项广泛的参数研究,以研究运动估计的有效性,并在此工作基准指标中呈现,以量化运动校正和正常体积重建方法对功能连通性计算的影响。我们证明了提出的框架改善功能连通性估计,可重复性和信号解释性的能力,这对于建立预后的非侵入性成像生物标志物是临床上非常需要的。运动校正和体积重建框架可作为开源套件的NiftyMic包装。

Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源