论文标题
在金茨堡 - Landau波动超导的方法中的热力学衰竭案例
A case of thermodynamic failure in the Ginzburg--Landau approach to fluctuation superconductivity
论文作者
论文摘要
Ginzburg-Landau方法假设能量密度,以及对超流动的解释,并提出了欧姆定律。我们考虑过光滑或分段均匀的准二维非均匀的超导循环,它们包围了磁通量,在临界温度之上。由于热波动,我们评估了每单位长度释放的电流和功率的平均值。我们考虑三个平均值:使用时间依赖模型的规范集合平均值,时间平均水平,以及在互惠空间中的规范集合。所有评估都表明,尽管环路在均匀的温度下,但仍会在环路的一部分中吸收热量并在其他部分释放。
The Ginzburg--Landau approach postulates an energy density, together with an interpretation for the supercurrent, and invokes Ohm's law. We consider quasi-one-dimensional nonuniform superconducting loops, either smooth or piecewise uniform, that enclose a magnetic flux, above the critical temperature. We evaluate the averages of the current and of the power released per unit length, due to thermal fluctuations. We consider three averages: canonical ensemble average, time-average using a time-dependent model, and canonical ensemble in the reciprocal space. All the evaluations imply that heat is absorbed in part of the loop and released in other part, despite the assumption that the loop is at uniform temperature.