论文标题
威尔逊循环的对称特性与拉格朗日插入
Symmetry properties of Wilson loops with a Lagrangian insertion
论文作者
论文摘要
Null Wilson循环$ \ MATHCAL {N} = 4 $ SUPER YANG-MILLS对于平面散射幅度是双重的。这种双重性意味着两个对象的隐藏对称性。我们考虑密切相关的红外有限可观察物,定义为Wilson Loop,其Lagrangian插入,由Wilson Loop本身归一化。与文献中研究的比率和剩余功能不同,这种可观察到的可观察到的是四个散射颗粒,并且与非苏格米对称阳性理论中的(有限部分)散射过程非常相似。我们使用拉格朗日插入研究威尔逊循环的一般结构,特别是其领先的奇异性及其(隐藏的)对称性。我们发现证据表明,主要的奇异性可以写为某些格拉曼尼亚积分。后者显然是双重的。它们还具有共形的对称性,直到总导数。我们发现,令人惊讶的是,在Lagrangian插入点被发送到Infinity的框架中,保形对称成为不变性。此外,我们使用一致性方法来研究较高的桑扬族对格拉曼尼亚积分的作用。我们评估了在树和一环级别上可观察到的$ n $粒子,发现紧凑的分析公式。这些结果是以保形领导奇异性的形式明确编写的,乘以先验功能。然后,我们将这些公式与纯Yang-Mills理论中的全加幅度的已知表达式进行了比较。我们发现了一个了不起的新连接:$ \ mathcal {n} = 4 $ super yang-mills中带有拉格朗日插入的威尔逊循环似乎可以预测平面pure yang-mills all-plus幅度的最大重量术语。我们测试了两层$ n $ n $点的Yang-Mills振幅以及三环振幅的这种关系。
Null Wilson loops in $\mathcal{N}=4$ super Yang-Mills are dual to planar scattering amplitudes. This duality implies hidden symmetries for both objects. We consider closely related infrared finite observables, defined as the Wilson loop with a Lagrangian insertion, normalized by the Wilson loop itself. Unlike ratio and remainder functions studied in the literature, this observable is non-trivial already for four scattered particles and bears close resemblance to (finite parts of) scattering processes in non-supersymmetric Yang-Mills theory. We study the general structure of the Wilson loop with a Lagrangian insertion, focusing in particular on its leading singularities and their (hidden) symmetry properties. We find evidence that the leading singularities can be written as certain Grassmannian integrals. The latter are manifestly dual conformal. They also have a conformal symmetry, up to total derivatives. We find that, surprisingly, the conformal symmetry becomes an invariance in the frame where the Lagrangian insertion point is sent to infinity. Furthermore, we use integrability methods to study how higher Yangian charges act on the Grassmannian integral. We evaluate the $n$-particle observable both at tree- and at one-loop level, finding compact analytic formulas. These results are explicitly written in the form of conformal leading singularities, multiplied by transcendental functions. We then compare these formulas to known expressions for all-plus amplitudes in pure Yang-Mills theory. We find a remarkable new connection: the Wilson loop with Lagrangian insertion in $\mathcal{N}=4$ super Yang-Mills appears to predict the maximal weight terms of the planar pure Yang-Mills all-plus amplitude. We test this relationship for the two-loop $n$-point Yang-Mills amplitude, as well as for the three-loop four-point amplitude.