论文标题

COVID19大流行繁殖数的时间演变:从近端优化到蒙特卡洛采样的估计

Temporal evolution of the Covid19 pandemic reproduction number: Estimations from proximal optimization to Monte Carlo sampling

论文作者

Abry, Patrice, Fort, Gersende, Pascal, Barbara, Pustelnik, Nelly

论文摘要

监视Covid19大流行的演变构成了卫生政策设计的关键一步。然而,由于公共卫生当局提供的数据质量有限(丢失的数据,异常和伪季节,特别是尤其是在估算之前,对大流行时期的大流行强度的评估仍然是一项具有挑战性的任务。最近,繁殖数的估计是大流行强度的量度,作为一个反问题,结合了数据模型保真度和时空规则性约束,通过非平滑凸近近端最小化来解决。尽管很有希望,但该配方对CoVID19数据和置信度评估的有限质量缺乏鲁棒性。目前的工作旨在解决这两个局限性:首先,它通过考虑直接在反问题制定中直接计算数据的低质量来讨论解决大流行强度的解决方案。其次,通过利用对反问题表述的贝叶斯解释,它设计了一种蒙特卡洛采样策略,该策略是针对非平滑log-concave a后验分布量身定制的,以产生相关的可信度间隔估计值,以估算COVID19繁殖数。临床相关性适用于卫生当局大约200个国家公开获得的新感染的每日计数,拟议的程序允许对COVID19大流行强度的时间演变进行强有力的评估,并每天自动更新。

Monitoring the evolution of the Covid19 pandemic constitutes a critical step in sanitary policy design. Yet, the assessment of the pandemic intensity within the pandemic period remains a challenging task because of the limited quality of data made available by public health authorities (missing data, outliers and pseudoseasonalities, notably), that calls for cumbersome and ad-hoc preprocessing (denoising) prior to estimation. Recently, the estimation of the reproduction number, a measure of the pandemic intensity, was formulated as an inverse problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that formulation lacks robustness against the limited quality of the Covid19 data and confidence assessment. The present work aims to address both limitations: First, it discusses solutions to produce a robust assessment of the pandemic intensity by accounting for the low quality of the data directly within the inverse problem formulation. Second, exploiting a Bayesian interpretation of the inverse problem formulation, it devises a Monte Carlo sampling strategy, tailored to a nonsmooth log-concave a posteriori distribution, to produce relevant credibility intervalbased estimates for the Covid19 reproduction number. Clinical relevance Applied to daily counts of new infections made publicly available by the Health Authorities for around 200 countries, the proposed procedures permit robust assessments of the time evolution of the Covid19 pandemic intensity, updated automatically and on a daily basis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源