论文标题

香蕉:多边图及其Feynman积分

Bananas: multi-edge graphs and their Feynman integrals

论文作者

Kreimer, Dirk

论文摘要

我们考虑$ n $内部边缘上的多边或香蕉图$ b_n $,带有不同质量$ m_i $的$ e_i $。我们专注于cut香蕉图$ \ im(φ_r(b_n))$,从中可以通过分散来得出完整结果$φ_R(b_n)$的完整结果。我们通过迭代积分给出了$ \ im(φ_r(b_n))$的递归定义。我们将详细讨论此迭代积分的结构。包括关于随附的微分方程,单轨道和主积分基础的讨论。

We consider multi-edge or banana graphs $b_n$ on $n$ internal edges $e_i$ with different masses $m_i$. We focus on the cut banana graphs $\Im(Φ_R(b_n))$ from which the full result $Φ_R(b_n)$ can be derived through dispersion. We give a recursive definition of $\Im(Φ_R(b_n))$ through iterated integrals. We discuss the structure of this iterated integral in detail. A discussion of accompanying differential equations, of monodromy and of a basis of master integrals is included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源