论文标题
使用神经网络进行审查的Asterosic普Δν$测量
Vetting Asteroseismic $Δν$ Measurements using Neural Networks
论文作者
论文摘要
精确的呼吸症参数允许一个恒星样本快速估计半径和质量分布。有许多自动化方法可用于计算最大声音功率的频率($ν_ {\ mathrm {max}} $),以及从红色巨人的功率光谱中的载体模式($Δν$)之间的频率分离。但是,通过结果进行过滤需要手动审查,详细跨多种方法进行平均,或者在某些参数中进行锐利的切割,以确保稳健的恒星样品无异常值。鉴于合奏研究对银河考古学和数据可用性的激增的重要性,需要更快地获得可靠的星号参数的方法。我们提出了一个神经网络分类器,该分类器通过结合视觉$Δν$ vetting过程的多个特征来审查$Δν$。我们的分类器能够分析大量恒星,以确定其测得的$Δν$是否可靠,从而以最小的努力提供干净的振荡恒星样品。我们的分类器独立于用于获得$ν_ {\ mathrm {max}} $和$Δν$的方法,因此可以作为任何此类方法的最后一步。分类器在手动审查$Δν$测量方面的性能的测试达到95%。我们将该方法应用于K2银河考古学计划观察到的巨人,发现我们的结果保留了与天体物理振荡参数的恒星,该参数符合已通过良好的开普勒红色巨人定义的参数分布一致。
Precise asteroseismic parameters allow one to quickly estimate radius and mass distributions for large samples of stars. A number of automated methods are available to calculate the frequency of maximum acoustic power ($ν_{\mathrm{max}}$) and the frequency separation between overtone modes ($Δν$) from the power spectra of red giants. However, filtering through the results requires either manual vetting, elaborate averaging across multiple methods, or sharp cuts in certain parameters to ensure robust samples of stars free of outliers. Given the importance of ensemble studies for Galactic archaeology and the surge in data availability, faster methods for obtaining reliable asteroseismic parameters are desirable. We present a neural network classifier that vets $Δν$ by combining multiple features from the visual $Δν$ vetting process. Our classifier is able to analyse large numbers of stars determining whether their measured $Δν$ are reliable thus delivering clean samples of oscillating stars with minimal effort. Our classifier is independent of the method used to obtain $ν_{\mathrm{max}}$ and $Δν$, and therefore can be applied as a final step to any such method. Tests of our classifier's performance on manually vetted $Δν$ measurements reach an accuracy of 95%. We apply the method to giants observed by K2 Galactic Archaeology Program and find that our results retain stars with astrophysical oscillation parameters consistent with the parameter distributions already defined by well-characterised Kepler red giants.