论文标题

在图表上学习有因果不变的表示形式

Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs

论文作者

Chen, Yongqiang, Zhang, Yonggang, Bian, Yatao, Yang, Han, Ma, Kaili, Xie, Binghui, Liu, Tongliang, Han, Bo, Cheng, James

论文摘要

尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)的概括成功了,但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区可能是非常昂贵的图形。为了弥合这一差距,我们提出了一个新框架,称为因果关系启发的不变图学习(CIGA),以捕获图形的不变性,以保证在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图表上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶层信息的所需子图。通过这些子图学习不受分配变化的影响。对16个合成或实际数据集进行了广泛的实验,包括具有挑战性的环境 - 药物,来自AI辅助药物发现,验证了CIGA的出色OOD性能。

Despite recent success in using the invariance principle for out-of-distribution (OOD) generalization on Euclidean data (e.g., images), studies on graph data are still limited. Different from images, the complex nature of graphs poses unique challenges to adopting the invariance principle. In particular, distribution shifts on graphs can appear in a variety of forms such as attributes and structures, making it difficult to identify the invariance. Moreover, domain or environment partitions, which are often required by OOD methods on Euclidean data, could be highly expensive to obtain for graphs. To bridge this gap, we propose a new framework, called Causality Inspired Invariant Graph LeArning (CIGA), to capture the invariance of graphs for guaranteed OOD generalization under various distribution shifts. Specifically, we characterize potential distribution shifts on graphs with causal models, concluding that OOD generalization on graphs is achievable when models focus only on subgraphs containing the most information about the causes of labels. Accordingly, we propose an information-theoretic objective to extract the desired subgraphs that maximally preserve the invariant intra-class information. Learning with these subgraphs is immune to distribution shifts. Extensive experiments on 16 synthetic or real-world datasets, including a challenging setting -- DrugOOD, from AI-aided drug discovery, validate the superior OOD performance of CIGA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源