论文标题

多体绿色的功能方法用于掺杂的fröhlich固体:精确的溶液和异常质量增强

Many-body Green's function approaches to the doped Fröhlich solid: Exact solutions and anomalous mass enhancement

论文作者

Kandolf, Nikolaus, Verdi, Carla, Giustino, Feliciano

论文摘要

在极性半导体和绝缘子中,电子与长波长纵向光学声子之间的Fröhlich相互作用会引起载体有效质量的多体重新归一化,以及在光谱功能中的特征声子侧带的显示,通常被称为“极地卫星”。捕获这些效果的最简单模型是Fröhlich模型,抛物线带中的电子与无分散纵向光学声子相互作用。从早期的扰动理论方法到现代图表蒙特卡洛计算,Fröhlich模型已用于多个开创性论文中。该模型的一个局限性是它专注于未掺杂的系统,因此忽略了载体筛选和保利阻断效应,这些效果在掺杂样品上存在的实验中存在。为了克服这一局限性,我们在这里将Fröhlich模型扩展到了掺杂系统的情况,并为电子光谱功能,质量增强和极性卫星提供了精确的解决方案。我们使用两种方法,即戴森的方程,具有粉丝 - 甲状化的自我能源,以及二阶累积扩展。我们发现这两种方法在质上提供了不同的结果。特别是,戴森的方法产生了更好的准颗粒质量和较差的卫星,而累积方法则以较差的准粒子质量提供了更好的卫星结构。两种方法在有限掺杂水平下产生了电子有效质量的异常增强,这又导致在相图的很大一部分中导致准粒子图片的分解。

In polar semiconductors and insulators, the Fröhlich interaction between electrons and long-wavelength longitudinal optical phonons induces a many-body renormalization of the carrier effective masses and the appearence of characteristic phonon sidebands in the spectral function, commonly dubbed 'polaron satellites'. The simplest model that captures these effects is the Fröhlich model, whereby electrons in a parabolic band interact with a dispersionless longitudinal optical phonon. The Fröhlich model has been employed in a number of seminal papers, from early perturbation-theory approaches to modern diagrammatic Monte Carlo calculations. One limitation of this model is that it focuses on undoped systems, thus ignoring carrier screening and Pauli blocking effects that are present in real experiments on doped samples. To overcome this limitation, we here extend the Fröhlich model to the case of doped systems, and we provide exact solutions for the electron spectral function, mass enhancement, and polaron satellites. We perform the analysis using two approaches, namely Dyson's equation with the Fan-Migdal self-energy, and the second-order cumulant expansion. We find that these two approaches provide qualitatively different results. In particular, the Dyson's approach yields better quasiparticle masses and worse satellites, while the cumulant approach provides better satellite structures, at the price of worse quasiparticle masses. Both approaches yield an anomalous enhancement of the electron effective mass at finite doping levels, which in turn leads to a breakdown of the quasiparticle picture in a significant portion of the phase diagram.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源