论文标题
自由屈服模型中淬灭后,电荷不平衡解决的纠缠消极情绪的动力学
Dynamics of charge-imbalance-resolved entanglement negativity after a quench in a free-fermion model
论文作者
论文摘要
量子多体系统中的全局内部对称性的存在反映在以下事实中:其子部分之间的纠缠具有内部结构,即可以将其分解为与每个对称部门相关的贡献之和。纠缠措施的对称分辨率为探测量子系统的不平衡动力学提供了强大的工具。在这里,我们研究了自由屈服系统的全球淬火后,电荷不平衡解决的消极情绪的时间演变,为对称分解的纠缠熵提供了以前的作品。 我们发现,电荷不平衡分辨的对数消极情绪显示出在大时段和系统尺寸的缩放限制中有效的设置,并在早期和无限时期提供了完美的设备。我们还得出了带电的Rényi对数负面动力学动力学的公式和猜想。我们认为,可以在纠缠动态的准粒子图片的框架中理解我们的结果,并提供了我们期望对通用集成模型有效的猜想。
The presence of a global internal symmetry in a quantum many-body system is reflected in the fact that the entanglement between its subparts is endowed with an internal structure, namely it can be decomposed as sum of contributions associated to each symmetry sector. The symmetry resolution of entanglement measures provides a formidable tool to probe the out-of-equilibrium dynamics of quantum systems. Here, we study the time evolution of charge-imbalance-resolved negativity after a global quench in the context of free-fermion systems, complementing former works for the symmetry-resolved entanglement entropy. We find that the charge-imbalance-resolved logarithmic negativity shows an effective equipartition in the scaling limit of large times and system size, with a perfect equipartition for early and infinite times. We also derive and conjecture a formula for the dynamics of the charged Rényi logarithmic negativities. We argue that our results can be understood in the framework of the quasiparticle picture for the entanglement dynamics, and provide a conjecture that we expect to be valid for generic integrable models.