论文标题

尖的prym-petri定理

A pointed Prym-Petri Theorem

论文作者

Tarasca, Nicola

论文摘要

我们构建了指向曲线的不可还原典型的双层双覆盖曲线的尖头brill-noether品种参数化线束,并在固定点处有规定的最小消失的曲线。我们将它们视为D型的退化基因座,并在预期维度的情况下推断出他们的课程。因此,我们确定了一个尖的prym-petri映射,并证明了Prym-petri定理的尖头版本,暗示预期维度在一般情况下存在。这些结果是基于韦特斯和de concini-pragacz在未点的案例上的工作。最后,我们表明,Prym品种是指列出标准移位tableaux times $ 2 $的prym-brill-noether曲线的prym-蛋白蛋白品种,扩展到了Ortega的Prym设置工作。

We construct pointed Prym-Brill-Noether varieties parametrizing line bundles assigned to an irreducible étale double covering of a curve with a prescribed minimal vanishing at a fixed point. We realize them as degeneracy loci in type D and deduce their classes in case of expected dimension. Thus, we determine a pointed Prym-Petri map and prove a pointed version of the Prym-Petri theorem implying that the expected dimension holds in the general case. These results build on work of Welters and De Concini-Pragacz on the unpointed case. Finally, we show that Prym varieties are Prym-Tyurin varieties for Prym-Brill-Noether curves of exponent enumerating standard shifted tableaux times a factor of $2$, extending to the Prym setting work of Ortega.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源