论文标题
在实时图像重建中,使用神经网络进行MRI引导放射疗法
On Real-time Image Reconstruction with Neural Networks for MRI-guided Radiotherapy
论文作者
论文摘要
动态适应辐射梁实时跟踪肿瘤运动的MRI戒断技术将导致更准确的癌症治疗,并减少附带健康组织损伤。重建未采样的MR数据的金标准是压缩传感(CS),它在计算上是缓慢的,并且限制了图像可用于实时适应的速率。在这里,我们证明了通过歧管近似(Automap)自动变换的使用,这是一个将RAW MR信号映射到目标图像域的广义框架,以快速重建来自底片径向K-Space数据的图像。对Automap神经网络进行了训练,可以从金角径向采集中重建图像,这是用于运动敏感成像,肺癌患者数据和来自Imagenet的通用图像的基准。随后,使用YouTube-8M数据集中的视频得出的运动编码的K-Space数据来增强模型训练,以鼓励运动稳健的重建。我们发现,自动化重建的径向K空间与CS具有同等准确性,但是在回顾性获得的肺癌患者数据上进行了初步微调后,处理时间较短。具有虚拟动态肺肿瘤幻影的运动训练模型的验证表明,从YouTube学到的广义运动特性导致了提高目标跟踪精度。我们的工作表明,自动制品可以实现径向数据的实时,准确的重建。这些发现表明,基于神经网络的重建可能优于实时图像指导应用的现有方法。
MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real-time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation. Here, we demonstrate the use of automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction. We find that AUTOMAP-reconstructed radial k-space has equivalent accuracy to CS but with much shorter processing times after initial fine-tuning on retrospectively acquired lung cancer patient data. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy. Our work shows that AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to existing approaches for real-time image guidance applications.