论文标题

在实时图像重建中,使用神经网络进行MRI引导放射疗法

On Real-time Image Reconstruction with Neural Networks for MRI-guided Radiotherapy

论文作者

Waddington, David E. J., Hindley, Nicholas, Koonjoo, Neha, Chiu, Christopher, Reynolds, Tess, Liu, Paul Z. Y., Zhu, Bo, Bhutto, Danyal, Paganelli, Chiara, Keall, Paul J., Rosen, Matthew S.

论文摘要

动态适应辐射梁实时跟踪肿瘤运动的MRI戒断技术将导致更准确的癌症治疗,并减少附带健康组织损伤。重建未采样的MR数据的金标准是压缩传感(CS),它在计算上是缓慢的,并且限制了图像可用于实时适应的速率。在这里,我们证明了通过歧管近似(Automap)自动变换的使用,这是一个将RAW MR信号映射到目标图像域的广义框架,以快速重建来自底片径向K-Space数据的图像。对Automap神经网络进行了训练,可以从金角径向采集中重建图像,这是用于运动敏感成像,肺癌患者数据和来自Imagenet的通用图像的基准。随后,使用YouTube-8M数据集中的视频得出的运动编码的K-Space数据来增强模型训练,以鼓励运动稳健的重建。我们发现,自动化重建的径向K空间与CS具有同等准确性,但是在回顾性获得的肺癌患者数据上进行了初步微调后,处理时间较短。具有虚拟动态肺肿瘤幻影的运动训练模型的验证表明,从YouTube学到的广义运动特性导致了提高目标跟踪精度。我们的工作表明,自动制品可以实现径向数据的实时,准确的重建。这些发现表明,基于神经网络的重建可能优于实时图像指导应用的现有方法。

MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real-time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation. Here, we demonstrate the use of automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction. We find that AUTOMAP-reconstructed radial k-space has equivalent accuracy to CS but with much shorter processing times after initial fine-tuning on retrospectively acquired lung cancer patient data. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy. Our work shows that AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to existing approaches for real-time image guidance applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源