论文标题

对抗状态更新系统的游戏理论分析

Game Theoretic Analysis of an Adversarial Status Updating System

论文作者

Banerjee, Subhankar, Ulukus, Sennur

论文摘要

我们研究了状态更新系统的游戏理论平衡点,并用对手堵塞了下行链路中的更新。我们考虑具有多样性的系统模型。对手可以将整个通信窗口的比例最高限制在$α$中。在没有多样性的模型中,在每个时间插槽中,基站根据固定分配从$ n $用户计划用户。对手块(JAMS)$αt$ time插槽的选择是从$ t $ t $ time插槽中。对于此系统,我们表明不存在NASH平衡,但是,当基站的调度算法充当领导者时,存在stackelberg平衡,并且对手充当追随者。在具有多样性的模型中,在每次插槽中,基站将用户从$ n $用户安排,并根据固定分配从$ n_ {sub} $ sub-carrier中选择子运营商将更新数据包传输到计划的用户。对手在其选择的子载体上选择了$αt$ time插槽。对于此系统,我们表明存在NASH平衡并确定NASH平衡。

We investigate the game theoretic equilibrium points of a status updating system with an adversary that jams the updates in the downlink. We consider the system models with and without diversity. The adversary can jam up to $α$ proportion of the entire communication window. In the model without diversity, in each time slot, the base station schedules a user from $N$ users according to a stationary distribution. The adversary blocks (jams) $αT$ time slots of its choosing out of the total $T$ time slots. For this system, we show that a Nash equilibrium does not exist, however, a Stackelberg equilibrium exists when the scheduling algorithm of the base station acts as the leader and the adversary acts as the follower. In the model with diversity, in each time slot, the base station schedules a user from $N$ users and chooses a sub-carrier from $N_{sub}$ sub-carriers to transmit update packets to the scheduled user according to a stationary distribution. The adversary blocks $αT$ time slots of its choosing out of $T$ time slots at the sub-carriers of its choosing. For this system, we show that a Nash equilibrium exists and identify the Nash equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源