论文标题

隐私保护,测量错误以及遥感和社会经济调查数据的整合

Privacy Protection, Measurement Error, and the Integration of Remote Sensing and Socioeconomic Survey Data

论文作者

Michler, Jeffrey D., Josephson, Anna, Kilic, Talip, Murray, Siobhan

论文摘要

在发布社会经济调查数据时,调查计划实施了旨在保留隐私的各种统计方法,但它们是以扭曲数据为代价的。我们探讨了在世界银行生活水平测量研究支持的大规模调查中保留隐私的空间匿名方法的程度 - 农业综合调查(LSMS-ISA)引入计量经济学估算中的测量误差,何时该调查数据与遥感天气数据集成。在一个预先分析计划的指导下,我们生产了90个链接的气象屋,这些数据集因空间匿名方法和遥感天气产品而异。通过改变数据以及计量经济学模型,我们量化了来自保护隐私度量导致的准确性丧失的测量误差的幅度和意义。我们发现,当前使用的一般使用的空间匿名技术平均不受对天气和农业生产率之间关系的估计的影响。但是,空间匿名化引入不种种不种类的程度是分析中使用遥感天气产品的功能。我们得出的结论是,在希望将其与公开可用的调查数据集成时,必须注意选择遥感天气产品。

When publishing socioeconomic survey data, survey programs implement a variety of statistical methods designed to preserve privacy but which come at the cost of distorting the data. We explore the extent to which spatial anonymization methods to preserve privacy in the large-scale surveys supported by the World Bank Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) introduce measurement error in econometric estimates when that survey data is integrated with remote sensing weather data. Guided by a pre-analysis plan, we produce 90 linked weather-household datasets that vary by the spatial anonymization method and the remote sensing weather product. By varying the data along with the econometric model we quantify the magnitude and significance of measurement error coming from the loss of accuracy that results from protect privacy measures. We find that spatial anonymization techniques currently in general use have, on average, limited to no impact on estimates of the relationship between weather and agricultural productivity. However, the degree to which spatial anonymization introduces mismeasurement is a function of which remote sensing weather product is used in the analysis. We conclude that care must be taken in choosing a remote sensing weather product when looking to integrate it with publicly available survey data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源