论文标题

通过运动学表示从超声图像中预测精细的手指运动

Towards Predicting Fine Finger Motions from Ultrasound Images via Kinematic Representation

论文作者

Zadok, Dean, Salzman, Oren, Wolf, Alon, Bronstein, Alex M.

论文摘要

建立机器人假体的核心挑战是创建基于传感器的系统,能够从下肢读取生理信号,并指示机器人手执行各种任务。现有系统通常通过采用肌电图(EMG)或超声(US)技术来分析肌肉状态,进行诸如指向或抓握之类的离散手势。虽然过去通过检测突出的手势来估计手指手势,但我们对检测或推理感兴趣,在随着时间的流逝而发展的精细动作的背景下进行。示例包括执行精细且灵巧的任务(例如键盘打字或钢琴弹奏)时发生的动作。我们将这项任务视为朝着臂截肢者中机器人假体提高采用率的重要一步,因为它有可能显着提高执行日常任务的功能。为此,我们提出了一个端到端的机器人系统,可以成功推断出精细的手指运动。这是通过将手建模为机器人操纵器并将其用作中间表示来实现的,以从美国图像序列中编码肌肉的动力学。我们通过收集一组主题的数据来评估我们的方法,并演示如何用于重播播放或键入的音乐。据我们所知,这是第一个研究端到端系统中这些下游任务的第一项研究。

A central challenge in building robotic prostheses is the creation of a sensor-based system able to read physiological signals from the lower limb and instruct a robotic hand to perform various tasks. Existing systems typically perform discrete gestures such as pointing or grasping, by employing electromyography (EMG) or ultrasound (US) technologies to analyze muscle states. While estimating finger gestures has been done in the past by detecting prominent gestures, we are interested in detection, or inference, done in the context of fine motions that evolve over time. Examples include motions occurring when performing fine and dexterous tasks such as keyboard typing or piano playing. We consider this task as an important step towards higher adoption rates of robotic prostheses among arm amputees, as it has the potential to dramatically increase functionality in performing daily tasks. To this end, we present an end-to-end robotic system, which can successfully infer fine finger motions. This is achieved by modeling the hand as a robotic manipulator and using it as an intermediate representation to encode muscles' dynamics from a sequence of US images. We evaluated our method by collecting data from a group of subjects and demonstrating how it can be used to replay music played or text typed. To the best of our knowledge, this is the first study demonstrating these downstream tasks within an end-to-end system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源