论文标题

使用神经网络的高级睡眠主轴识别

Advanced sleep spindle identification with neural networks

论文作者

Kaulen, Lars, Schwabedal, Justus T. C., Schneider, Jules, Ritter, Philipp, Bialonski, Stephan

论文摘要

睡眠主轴是神经生理现象,似乎与中枢神经系统的记忆形成和其他功能有关,并且可以在睡眠期间在脑电图记录(EEG)中观察到。手动识别出脑电图记录中的主轴注释具有大量的评估者间和评估者的变异性,即使评估者经过了高度训练,这降低了纺锤测量的可靠性作为研究和诊断工具。大规模的在线数据注释(MODA)项目最近通过从多个此类评级专家那里达成共识来解决此问题,从而提供了提高质量的主轴注释的语料库。基于此数据集,我们提出了一个U-NET型深神经网络模型,以自动检测睡眠纺锤体。我们的模型的性能超过了最先进的检测器和MODA数据集中大多数专家的性能。我们观察到所有年龄段受试者的检测准确性提高,包括老年人的纺锤体特别具有挑战性的检测。我们的结果强调了自动化方法的潜力,即具有超人性能的重复性繁琐的任务。

Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源