论文标题
高$ t_c $中的超导性和相关的强度相关系统从变分的角度:超越平均场理论
Superconductivity in high-$T_c$ and related strongly correlated systems from variational perspective: Beyond mean field theory
论文作者
论文摘要
在这篇综述中,我们可以选择高$ T_C $和相关系统的选定通用功能,这可以与实验进行比较。我们从真实空间配对的概念开始,再加上强相关性。对混凝土特性的讨论依赖于变异方法,基于统计上一致的Gutzwiller近似(SGA)的形式,基于重新归一化的平均场理论(RMFT),以及变异波函数(DE-GWF)的图表扩展。出现了两个能量尺度,一个涉及靠近费米能的准粒子,另一个反映了相关状态。这两个制度在色散关系中被一个扭结分离,在光发射中观察到。一个人同时获得了掺杂依赖性的特性和重新归一化的准粒子。审查的高$ T_C $系统的地面特征包括超导性,列表,电荷 - (和配对)密度波效应,以及在配对状态下的非BCS动能能量增益,都是定量的。计算出的动态特性是:通用费米速度,费米波载体,有效的质量增强,伪gap和$ d $ - 波间隙幅度。最小现实的模型由$ t $ - $ j $ - $ u $ $ hamiltonian表示。讨论了$ t $ - $ j $和哈伯德模型的不足。对于繁重的费米亚系统,我们总结了超导,围绕绝缘,铁磁性状态。我们概述还共存于$ \ mathrm {uge_2} $的$ \ mathrm {uge_2} $的超导阶段。最后,我们将计划扩展到高$ T_C $系统中的集体旋转和充电波动,从变化方法开始,再加上$ 1/n $扩展(超出随机相位近似)。集体旋转和电荷激励是针对哈伯德和$ t $ - $ J $ - $ U $型号确定的,并与最近的实验进行了定量比较。
In this review, we single out selected universal features of high-$T_c$ and related systems, which can be compared with experiment. We start with the concept of real-space pairing, combined with strong correlations. The discussion of concrete properties relies on variational approach, based on renormalized mean-field theory (RMFT) in the form of statistically-consistent Gutzwiller approximation (SGA), and Diagrammatic Expansion of the Variational Wave Function (DE-GWF). Two energy scales appear, one involving quasiparticles close to the Fermi energy, and the other reflecting the correlated state. Those two regimes are separated by a kink in the dispersion relation, observed in photoemission. One obtains both the doping dependent properties and renormalized quasiparticles. The reviewed ground-state characteristics for high-$T_c$ systems encompass superconductivity, nematicity, charge- (and pair-) density-wave effects, as well as non-BCS kinetic energy gain in the paired state, all in quantitative manner. Calculated dynamic properties are: universal Fermi velocity, Fermi wave-vector, effective mass enhancement, pseudogap, and $d$-wave gap magnitude. The minimal realistic model is represented by the $t$-$J$-$U$ Hamiltonian. Inadequacy of the $t$-$J$ and Hubbard models is discussed. For heavy fermion systems we summarize superconducting, Kondo insulating, ferro- and anti-ferromagnetic states. We overview also coexistent ferromagnetic (spin-triplet) superconducting phases observed for $\mathrm{UGe_2}$. Finally, we extend our scheme to collective spin and charge fluctuations in high-$T_c$ systems, starting from variational approach, combined with $1/N$ expansion (beyond random phase approximation). Spectrum of collective spin and charge excitations is determined for the Hubbard and $t$-$J$-$U$ models, and compared quantitatively with recent experiments.